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I.    INTRODUCTION 

The correlation matrix is a symmetric positive semi definite (SPSD) matrix which occupies “1” along the diagonal. The 

correlation matrices occur in many areas of numerical linear algebra. It also includes linear system and the error analysis 

of Jacobi methods for symmetric eigenvalue problem [1]. We are interested to compute nearest correlation matrix for an 

arbitrary symmetric matrix A   Rn×n
.  For this, we have to compute, 

 The distance d(A) = Minimize || A-X ||   Where “X” is a nearest correlation matrix.                  (1.1) 

 A matrix that should achieve this minimum distance and solve problem                                

In (1.1), the defined norm is the weighted version of the Frobenius norm  || A ||F = Ʃmn a
2

mn,  

                                                                    || A ||M = || M
1/2

AM
1/2 

||F                                                                                    (1.2)  

In (1.2), the fixed matrix “M” is a symmetric positive definite (SPD) matrix. 

We are looking for matrix in the intersection of two closed convex sets “F” and “G” which is closest to matrix “A” in 

weighted Frobenius norm. The close convex sets “F” and “G” are defined as following. 

                                 F = { B = B
T  

R
n×n 

: B ≥ 0 } and  G = { B = B
T  Rn×n 

: bii =1, i=1:n} 

For matrix B, B ≥ 0 or B ≤ 0 means that B is positive semi-definite (PSD) or negative semi definite. The minimum 

problem (1.1) defined as above is achieved and is unique [2]. In section II, we give the solution to problem (1.1) for M-

norm. We also compute solution to problem (1.1) by using modified alternating projection method (MAPM). We project 

iteratively by repeating projection onto close convex sets. In section III, we study the norm convergence for the 

correlation matrix to given symmetric matrix. 

II.    THEORY 

The development in this section is inspired by Glunt et al [3]. This is about treatment of the nearest Euclidean   distance 

matrix problem.  

Theorem 2.1.  The correlation matrix “X” solves problem (1.1) if and only if  

                                                             X = A + M
-1 

( SDS
T 

+ diag (αi) ) M
-1                                                                                         

           (2.1) 

In (2.1), S   Rn×p
, which possesses orthonormal columns that spans null(X), D = diag (di) ≥ 0 and “αi” be an arbitrary. 
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Proof. In (1.2), we work with M-norm; we define an inner-product on R
n×n

 which induces M-norm. 

                                                                          〈     〉 = Trace (A
T
MEM) 

 For convex set K   Rn×n
, the normal cone of “K” at Z   K is defined as,  

                               NK (E) = { B = B
T  

R
n×n 

: 〈        〉 ≤ 0 for all Z   K }                                                                  (2.2) 

                                           = { B = B
T   R

n×n 
: 〈     〉 = Max 〈     〉 for all Z   K }                                                        (2.3) 

The solution “X” to (1.1) is characterized by the inequality [2].  

                                            〈             〉 ≤ 0 for all Z   (F∩G)                                                                                (2.4) 

The above condition can be written as, A   X   N(F∩G) (X)                                                                                              (2.5) 

Which implies that,[4].                          A-X   NF (x) + NG (X)                                                             

Now, we determine NF (x) and NG (X). 

Lemma 2.1. For A   G, we have,  

                                      NG (A) = { M
-1
diag(αi) M

-1
 : αi is an arbitrary}                                                                            (2.6) 

Proof. From (2.3), we have, NG (A) = { B = B
T  R

n×n 
: 〈    〉 = Max 〈    〉  for all Z   G}                                    

The constraint to above is written as, Ʃmn b mnamn = Max Ʃmn b mnzmn ,where B   = MBM and B  is a diagonal matrix, which 

shows that B = M
-1
diag(αi) M

-1 
where B  = diag(αi), which gives prove.                                                 

Lemma 2.2. For A   F, we have, That is, NF(A) = { B = B
T   R

n×n 
: 〈      〉 = 0, B ≤ 0 }                                          

This result is characterized by [5].   

 Proof. From (2.3), we have, NG (A) = { B = B
T   R

n×n 
: 〈      〉 = Max 〈   〉   for all Z   G } 

We take spectral decomposition of Z   G, as Z = RDR
T
, where “R” is an orthogonal matrix that is RR

T
= R

T
R= I and D = 

diag (λi) ≥ 0. Then, with P = R
T
MBMR. 

So, 〈      〉  = Max 〈      〉     for all Z   G      

                                                         = Max 〈         〉             where D ≥ 0,  R
T
R = RR

T
 = I                                                                                            

This implies that,                              

                                                         = Max 〈         〉       where D ≥ 0,  R
T
R= RR

T
 = I   

                                                         = Max  〈      〉                   where D ≥ 0,  R
T
R= RR

T
 = I   

                                                         = Max Ʃi λi pii                      where D ≥ 0,  R
T
R=  RR

T
 = I        

So,  〈      〉  = 0 if B ≤ 0, which gives prove.                                                                                                                 

For maximum condition equality holds for B so that〈      〉 = 0 if B ≤ 0.                                                          

Corollary 2.3. For A   G, we have,  

NG (A) = { B :MBM = -SDS
T
, where D = diag(di) ≥ 0, S    R

n×P
  has orthogonal columns that spans null(A) }.                                                                                                                                                                                                

Therefore, condition (2.5) gives proof of theorem 2.1 on applying lemma 2.1 and corollary (2.3).         

Modified Alternating Projection Method (MAPM) 

First we consider how to project onto closed convex sets “F” and “G”. We write “бF” and “бG” as the projections onto “F” 

and “G” respectively.                                                                                                                                      

Theorem 3.1 For M-norm,     

бG(A) = A - M
-1
diag(αi) M

-1
 , Where αi = [α1,…, αn]

T 
be the solution of linear system given (3.1) 

                                                                   ( M
-1
оM

-1 
) α = diag( A – I )                                                                            (3.1) 

In (3.1), “о” stands for element wise product that is AоB = (amn bmn).                                                                            
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Proof. The projection X = бG (A) which is characterized by the condition A - X   NG (X), which, by lemma 2.1 can be 

written as following,      

                                          A - X = M
-1 
diag(αi) M

-1
                                                                                                     

Now, by equating the diagonal elements and writing M
-1 

= ( mij ), we have,     

Ʃj (m
2
)ij αij = aii - 1, these equations form the linear  system described in (3.1). We obtain a unique solution for (3.1) due to 

fact “M” to be a positive definite matrix so is ( M
-1 
о M

-1 
).                                                                              

Theorem 3.2   For M-norm, 

бF (A) = M
-1/2 

( ( M
1/2 

A M
1/2 

)+ ) M
-1/2                                                                                                                                        

(3.2)  

Furthermore we also have,diag (A) ≤ diag (бF (A) ) Proof.  Before it to prove this theorem, we use some notation. For A   

R
n×n

, we write the spectral decomposition of A as, A = QDQ
T
, where “Q” is an orthogonal matrix that is QQ

T 
= Q

T
Q = I, 

where D = diag (λi). We splits the matrix “A” as, A= A+ + A-  where A+ = Qdiag(max (λi,0))Q
T
  and similarly A-= 

Qdiag(min(λi,0))Q
T
 and  A+A- = A-A+=0.                                                                                                              

The projection X =  бF (A) which is characterized by the condition A - X   NF (X), which, by lemma 2.2 can be written as 

following,    

                                 A - X ≤ 0 and Trace ((A-X)MXM) = 0.                                                                                      

First we show that A - X ≤ 0, for this we fallow as,   

                                         A - X = M
-1/2

((M
1/2

AM
1/2

-(M
1/2

AM
1/2

)+)M
-1/2 

 

                                                   = M
-1/2

((M
1/2

AM
1/2

)-)M
-1/2 

 

                                                    ≤ 0, which is required proof.
         

 

Now, we show that  
 
Trace ((A-X)MXM) = 0 

            
                      

                   (A-X)MXM = M
-1/2

(M
1/2

AM
1/2

)- M
-1/2

. M
1/2

((M
1/2

AM
1/2

)+)M
1/2 

 

                                                                  = M
-1/2

(M
1/2

AM
1/2

)- (M
1/2

AM
1/2

)+M
1/2

 

                                                                  = 0, which is required proof.                                                                  

Now, we show that diag (A) ≤ diag(бF (A))   

                            Since,         (M
1/2

A M
1/2

)+ - M
1/2

AM
1/2 
≥ 0                                                                                        

We pre- and post-multiply above with M
-1/2

 and the we select only the diagonal parts. This gives us required result.                                                                                                                                                          

Algorithm3.2.[6]:-  For M-norm, the following algorithm gives us the nearest correlation matrix for given symmetric 

matrix A   R
n×n 

. 

                                      ΔTо = 0, Yо= A 

                                      For r = 1,2,3,… 

                                            Qr   = Yr-1- ΔTr-1      % Dykstra’s correction 

                                             Xr  = бF (Qr) 

                                            ΔTr = Xr - Qr  

                                              Yr = бG (Xr) 

                                                 end                                                                                                                                        

Both sequences Xr  and Yr converges to nearest correlation matrix as r → ∞.      

III.     CONVERGENCE ANALYSIS 

For convergence analysis, we adopt more general case. We consider that closed convex sets are in real Hilbert Space H. 

We let K = ∩Ki for all i=1,2,…p  be the intersection of closed convex sets. We define projection onto each and every 

closed convex set to study the convergence analysis. The problem (1.1) is similar to the following minimum problem,    
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                                                                   Minimize || y – f ||                                                                                            (4.1) 

In (4.1), f є K, closed convex set and y be some fixed element of an inner-product space.                                                            

Definition 4.1.  Let H be a real Hilbert space. A sequence {xn}   H is said converges strongly to x   H if  ||xn-x||→0. We 

write it as xn

 
→ x.                                                                                                                                                        

Definition 4.2.  Let H be a real Hilbert space. A sequence {xn}   H is said converges weakly to X є H if xn . y → x . y for 

all y є H. We write it as xn

 
→ x.                                                                                                                               

Theorem 4.1. Let H be a real Hilbert space. Let y   H be an arbitrary element. Let K ≠ Ф be any non-empty closed convex 

set in H. Then, there exists a unique element “x” in K, the closed convex set, such that it solves minimum problem (4.1). 

The minimizing element “x” is characterized by the following inequality [2]. 

                                                           〈          〉  ≥ 0   for all f   K                                                                           (4.2)                                                     

To solve (4.1), we suggest an algorithm (3.2) which needs to find out projection on each and every closed convex set 

K=∩Ki for all i=1,2,…p.  For this, we define the projections as fallow.                                                                       

For 1
st
 cycle:  

 y11 = y + I11 ,                                                            where y11 is projection of y onto k1  

 y12 = y11  +I12 = y  +I11 + I12 ,                                    where y12 is projection of y11 onto k2   

 y13 = y12 + I13 = y + I11 + I12 + I13 ,                            where y13 is projection of y12 onto k3    

          .  

       . 

          .       

  y1p = y1,p-1 + I1p = y + I11 + I12 + I13 +…+ I1p ,           where y1,p is projection of y1,p-1 onto kp       

For 2
nd

 cycle:    

 After 1
st
 cycle, we first remove the increment I11 before projecting y1p onto k1, so for 2

nd
 cycle we fallow. 

 y21 = y1p - I11 + I21 = y + I21 + I12 +… + I1p,                 where y21 is projection of y1p-I11 onto k1  

 y22 = y21 - I12 + I22 = y + I21 + I22 + I13 +… + I1p,         where y22 is projection of y21-I12 onto k2 

 y23 = y22 - I13 + I23 = y + I21 + I22 + I23 + I14 +… + I1p,  where y23 is projection of y22-I13 onto k3 

         . 

      . 

      .  

 y2p= y2,p-1 - I1p + I2p = y + I21 + I22 + I23 +… + I2p,        where y2p is projection of y2,p-1-I1p onto kp                                                                                                    

By a continuous manner of above, we get the sequences { yni } and  { Ini } for all 1≤ i ≤  p  and n ≥1.                                  

We can accumulate above discussion for I = 2,3,… and n ≥1 as following.                                                                                                               

So,                                                              (a)    In-1,1-In1 = yn-1,p - yn1   

                                                                   (b)   In-1,p - Inp = yn,p-1 - ynp                                                                                 (4.3) 

In (4.3), we allow  y0p = y and I0p = 0 for all p. So, from this we obtained following characterization.  

                                       ynp = y + In1 +…+ Inp  + In-1,p+1 +…+ In-1,p  for all  1≤  i ≤  p  and n ≥1.                                          (4.4) 

Theorem 4.2.  The sequence { yni } converges strongly to minimizing element “x” that is, 

                                                           || yni - x || → 0 as n → ∞ for all 1 ≤  i ≤  p                                                                                                              

Proof of Theorem 4.2.  We start from the following Equalities, 

                                     || y – x ||
2 
= || (y11 - x) - I11 ||

2 
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                                                = || y11 – x ||
2 
– 2 ‹ y11 – x , I11› + || I11 ||

2
 

                                                = || y11 - x ||
2 
+ 2 ‹ y11 – x , y - y11 › + || I11 ||

2
                                                                     (4.5)                                                                                                                                                                

The middle term is non-negative due to (4.2). By a similar treatment we do decomposition for || y11 – x ||. 

                                   || y11 – x ||
2 
= || y12 – x ||

2 
+ 2 ‹ y12 – x , y11 - y12 ›  + || I12 ||

2
               

So, (4.5) takes the form, 

                                    || y – x ||
2 
= || y12 – x ||

2 
+ 2 ‹ y12  - x , y11 - y12 ›  + 2‹ y11 – x , y - y11 ›  + || I11 ||

2 
+ || I12 ||

2
                    

 If we continue this process, then through 1
st
 cycle we get,  

                      || y – x ||
2 
= || y1 p- x ||

2 
+ 2 Ʃi ‹ y1,i-1 - y1i , y1i – x ›  + Ʃi || I1i ||

2
 for all 1≤ i ≤ p, we set y10 = y.                    (4.6) 

In (4.6) all terms are non-negative.                                                                        

Also,             || y1p – x ||
2 
= || y21 – x ||

2 
+ 2 ‹ y - y11 , y11 - y21 › + 2 ‹ y1p - I11 - y21 , y21 – x › + || I11 -I21 ||

2
  

So, in view of above (4.6) gives us,                                                                                                                                          

|| y – x ||
2 
= || y21 – x ||

2 
+ 2 ‹ y - y11 , y11 - y21 › + 2 ‹ y1p - I11 - y21 , y21 – x › + 2 Ʃi=2:p‹ y1,i-1 - y1i , y1i – x › + Ʃi=1:p || I1i ||

2 
+ || I11 - 

I21 ||
2
.                                                                                                                                                                             

By continue this process to nth cycle and let i = p, we get  

|| y – x ||
2 
= || ynp –x ||

2 
+ Ʃm=1:n Ʃi=1:p || Im-1,i - Imi ||

2 
+ 2 Ʃm=1:n-1Ʃi=1:p‹ ym,i-1 - Im-1,i - ymi , ymi - ym+1,i › + 2 Ʃi=1:p‹ yn,i-1 - In-1,i  - yni  , 

yni - x›                                                                                                                                                                                  (4.7)      

In (4.7) we set, ym0  = ym-1,p for all “m” and  I0i = 0 for “i”. Here also all terms are non-negative for “n”.             

Hence, in (4.7), we have infinite sum described as, 

                                                                      Ʃm=1:∞ Ʃi=1:p || Im-1,i  - Imi||
2
 < ∞                                                                        (4.8) 

also clear that (4.8) along with (a) and (b) of (4.3) gives sequence of successive increments. So, 

                                                 || y11 - y12 || , || y12 - y13 || ,…, || y1p - y21 || ,…, || yn,i-1 - yni || → 0                                       

Hence,   the sequence { ynp } converges strongly to minimizing element “x” of (4.1) if and only if the sequence { yni } 

converges strongly to minimizing element “x” for all “i”.                                                                                     

Now, let f   K = ∩Ki for all i = 1,2,…p, for n  ≥ 1, we write as, 

               ‹ ynp – y , yn1 – f ›  = ‹ In1 +…+ Inp , yn1 – f › 

                                              = ‹In1 , yn1 – f ›  +…+ ‹ Inp , yn1 – f › 

                                              = ‹ In1 , yn1  -yn1 + yn1 – f ›  + ‹ In2 , yn1 - yn2 + yn2 – f › +…+ ‹ Inp , yn1 - ynp + ynp – f › 

                                              = ‹In2 , yn1 - yn2 ›  +…+ ‹ Inp , yn1 - ynp ›+ [ ‹ In1 , yn1 – f › +…+ ‹ Inp , ynp – f › ]                      (4.9)   

By using properties of absolute value and Cauchy-Shwarz Inequality for the expression as 

                                           ‹ In2 , yn1 - yn2  › +…+ ‹ Inp , yn1 - ynp ›    in (4.9), we get following 

       │‹ In2 , yn1 - yn2 › +… + ‹Inp , yn1 - ynp › │≤  || In2 || || yn1 -yn2  || +…+ || Inp || || yn1 - ynp ||                                          (4.10) 

(4.10) it can also be noted that, 

|| yn1 - yni  || = || yn1 - yn2 + yn2 - yn3 +…-yn,i-1-  yni  ||  ≤  || yn1 - yn2 || + || yn2 - yn3 || +…+ || yn,p-1 - ynp || = Sn (say)               

 In view of above (4.10) implies that, 

                        │‹ In2 , yn1 - yn2 ›  +…+ ‹ Inp , yn1 - ynp › │ ≤  Ʃi=2:p || Ini || Sn                                                                

Also, || Ini || = || Ʃm=1:n(Imi-Im-1,i) || ≤ Ʃm=1:n || Imi - Im-1,i ||, which implies that (4.10) is bounded above  by                                       

Ʃm=1:n Ʃi=2:p || Imi - Im-1,i || Sn                                                                                                                            

Now, by using (b) of (4.3) and Sn define as above as, we get the following, 

               Ʃm=1:n Ʃi=2:p || Imi - Im-1,I || Sn = Ʃm=1:n Ʃi=2:p || ym,i-1 - ymi  || Sn = Ʃm=1:n Sm Sn                                           
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We are in position to show that Ʃn=1:∞ S
2

n < ∞. For this we let wi = ||In-1,i - In,i ||  for all  i = 2,3,…,p. Then,    

             S
2

n = ( Ʃi=2:p wi )
2
  = Ʃi=2:p w

2
i + 2 Ʃi‹j wi wj , where for last sum we have,             

(q-1)(q-2) ∕ 2 terms.   Since ( wi  - wj )
2
 ≥ 0, this implies that 2 wi wj ≤  w

2
i +  w

2
j  ≤  Ʃi=2:p w

2
i , which gives us, 

                            Ʃn=1:∞ S
2

n  ≤ [(q-1)(q-2) ∕ 2  + 1] Ʃn=1:∞Ʃi=2:p || In-1,i - Ini ||
2  

                                                  

From (4.8), it’s clear that right hand side of above is finite. So, Ʃn=1:∞ S
2

n < ∞.                                                  

Lemma 4.1.[7]  Let { Sn }
 
be  a sequence of non-negative real numbers with Ʃn=1:∞ S

2
n < ∞ , then there exists { Snj }, a 

subsequence such that 
  
Ʃm=1:nj Sm Snj → 0  as j → ∞                                                                                          

Since, it’s clear that (4.10) is bounded above by Ʃm=1:n SmSn for all “n”. From Lemma (4.1), we observe that (4.10) tends  

to zero for large “j” that is j → ∞ for n → nj.                                                                                                      

For any f   K (4.9) implies that,  

     
 

  ‹ ynj,p – y , ynj,1 – f ›   ≤  0  for all f   K                                                             (4.11)  

This implies that,    
 

 ‹ ynj,p – y , ynj,1 - ynj,p + ynj,p – f  › ≤  0  for all f   K                                                            

Which further can be written as, 

                                               { ‹ ynj,p – y , ynj,1 - ynj,p › + ‹ ynj,p – y , ynj,p - f ›} ≤ 0  for all f   K.                             

We use Cauchy-Shwarz Inequality for ‹ ynj,p – y , ynj,1 - ynj,p  ›   to get, 

                                               │‹ ynj,p – y , ynj,1 - ynj,p › │≤ || ynj,p –y || || ynj,1 - ynj,p  ||                                          

From (4.7), we have || ynj,p - x|| is uniformly bounded in “j” while discussion from (4.8), we have, 

                                                || ynj,1 - ynj,p  || → 0   as  j →∞                                                                   

Therefore (4.11) implies that,    
 

  ‹ ynj,p – y , ynj,p – f  › ≤ 0  for all f   K                (4.12)                                

So, there should be a subsequence in  { ynj,p } which converges weakly to u   H that is   

                                                ynj,p  
 
→  u   as   j →∞                                                 (4.13)                                   

Since,  || ynj,p || is also bounded, we let a subsequence { nj } such that, || ynj,p || → v ≥ 0 as  j → ∞  (4.13)            

We use the result from  Balakrishnan [7], which says that,                                                                                         

If the { xn }
  
converges weakly to “x” that is, { xn }

   
 
→  x  and || xn || → x, then   || x || ≤  t.   

So, by using above result, (4.13) and (4.14) implies that || u || ≤ v.  

                                                        0 ≥     
 

 ‹ ynj,p – y , ynj,p – f ›                                                                                

This implies that,                               = v
2 
- ‹ u , f  › - ‹ u , y › + ‹y , f ›    

                                                           ≥ || u ||
2 
- ‹ u , f › - ‹ u , y › + ‹ y , f  ›   

                                                           ≥ ‹ u – y , u – f ›                                                                                           

This implies that,                              ‹ y – u , u – f  › ≤ 0    for all  f   K.                                                            

Now, next we show that u = x   K   , for this we verify that u   K. We fallow the result from Balakrishnan [6].  

The sequence { yk }
 
such that 

 

 
 [ ynj1,i +...+ ynjr,i ] 

 
→  u   as   r → ∞. Here sum in square bracket is the convex combination 

of elements in convex sets “Ki” for all “r” and lies in “Ki” for all “r”. This implies that u   Ki for all “i” because “Ki” be 

closed convex set for all “i”. Therefore, u   K and give u = x   K   . By taking f = u, from (4.12) we have the 

following, 

                                                 
 

  ‹ ynj,p – y , ynj,p - u ›  = v
2 
- || u ||

2
 ≤ 0              (4.14)                                                                             
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This implies that,                                        v = || u ||                                                                                 

Theorem 4.3.[7]:-  Consider  xn

 
→  x  and || xn || →|| x || ,Then   xn

 
→  x. 

In view of theorem (4.3) we have, ynj,p 
 
→  u = x. So the sub-sequence { ynp }

  
 
→  x. 

Now, we adopt a similar treatment that was for derivation of (4.7) and get the following result, 

|| ynj,p – x ||
2  

= || ynj+b,p  - x ||
2 
+  Ʃi=1:p Ʃq=1:b || Inj+q-1,i - Inj+q,I ||

2 
+ 2 Ʃi=1:p Ʃq=1:b ‹ Inj+q-1,i - Inj+q,i , ynj+q,i – x ›                   (4.15) 

 We split up last double sum into difference of two double sums and first re indexed  to set equation (4.15) as,     

  = 2 Ʃi=1:p Ʃq=0:b-1‹ Inj+q,i , ynj+q+1,i  - x › - 2 Ʃi=1:p Ʃq=1:b ‹ Inj+q,i , ynj+q,i – x ›                                                                   (4.16)  

  = 2 Ʃi=1:p ‹ Inj,i , ynj+1,i – x › + 2 Ʃi=1:p ‹ -Inj+b,i , ynj+b,i – x › + 2 Ʃi=1:p Ʃq=1:b-1 ‹ Inj+q,i , ynj+q+1,i - ynj+q,I ›                           (4.17) 

In equation (4.17), we have 

          2 Ʃi=1:p ‹ Inj,i , ynj+1,i – x ›   = 2 Ʃi=1:p ‹ Inj,i , ynj+1,i - ynj,I + ynj,i – x › 

                                                   = 2 Ʃi=1:p ‹ Inj,i , ynj+1,i - ynj,i  ›  + 2 Ʃi=1:p‹ Inj,i , ynj,i - x›                                               (4.18) 

In (4.18) each term is non-negative due to (4.2). From above discussion it’s clear that  

                                                  ‹ ynj,p – y , ynj,1 - x ›   → 0 as  j → ∞ 

This shows that (4.9) tends to zero for  n → n j and f = x which further clear the idea that as “j” increases then we get as   

2 Ʃi=1:p ‹ Inj,i , ynj,i – x ›   in equation (4.18) vanishes too. So, from this we have  

|| ynj,p – x ||
2
 consists of non-negative terms and for y → ∞, the sum goes to zero. That is, 

                                   || ynj+r – x ||
2 
→ 0 as j → ∞   for all r  ≥ 0 

Since, || ynj,p – x ||
2
 → 0   which gives the required result for convergence analysis of theorem (4.2). 
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